Question 9 - Jee advanced Math 2022 P2 Questions with Solutions
Let \(PQRS\) be a quadrilateral in a plane, where \(QR = 1\), \(\angle{PQR} = \angle{QRS} = 70^{\circ}\), \(\angle{PQS} = 15^{\circ}\) and \(\angle{PRS} = 40^{\circ}\). If \(\angle{RPS} = \theta^{\circ}\), \(PQ = \alpha\) and \(PS = \beta\), then the interval(s) that contain(s) the value of \(4\alpha \beta \sin{\theta}\) is/are A) \((0, \sqrt{2})\) B) \((1, 2)\) C) \((\sqrt{2}, 3)\) D) \((2\sqrt{2}, 3\sqrt{2})\) Sol : The given information is coded in the following figure : \(\angle{SQR} = 70^{\circ} - 15^{\circ} = 55^{\circ}\) \(\angle{PRQ} = 70^{\circ} - 40^{\circ} = 30^{\circ}\) In triangle \(QSR\), \(\angle{QSR} = 180^{\circ} - (55^{\circ} + (40^{\circ} + 30^{\circ}))\) \(= 55^{\circ}= \angle{SQR}\) \(\implies QR = SR = 1\)….{in a triangle, sides opposite to equal angles are equal} In triangle \(PQR\), \(\angle{QPR} = 180^{\circ} - (30^{\circ} + (15^{\circ} + 55^{\circ}))\) \(= 80^{\circ}\) Using Sine rule of triangles, \(\frac{\alpha}{\sin{30^{\ci...