Question 9 - Jee advanced Math 2022 P2 Questions with Solutions
Let \(PQRS\) be a quadrilateral in a plane, where \(QR = 1\), \(\angle{PQR} = \angle{QRS} = 70^{\circ}\), \(\angle{PQS} = 15^{\circ}\) and \(\angle{PRS} = 40^{\circ}\). If \(\angle{RPS} = \theta^{\circ}\), \(PQ = \alpha\) and \(PS = \beta\), then the interval(s) that contain(s) the value of \(4\alpha \beta \sin{\theta}\) is/are
A) \((0, \sqrt{2})\)
B) \((1, 2)\)
C) \((\sqrt{2}, 3)\)
D) \((2\sqrt{2}, 3\sqrt{2})\)
Sol :
The given information is coded in the following figure :
\(\angle{SQR} = 70^{\circ} - 15^{\circ} = 55^{\circ}\)
\(\angle{PRQ} = 70^{\circ} - 40^{\circ} = 30^{\circ}\)
In triangle \(QSR\),
\(\angle{QSR} = 180^{\circ} - (55^{\circ} + (40^{\circ} + 30^{\circ}))\)
\(= 55^{\circ}= \angle{SQR}\)
\(\implies QR = SR = 1\)….{in a triangle, sides opposite to equal angles are equal}
In triangle \(PQR\),
\(\angle{QPR} = 180^{\circ} - (30^{\circ} + (15^{\circ} + 55^{\circ}))\)
\(= 80^{\circ}\)
Using Sine rule of triangles,
\(\frac{\alpha}{\sin{30^{\circ}}} = \frac{1}{\sin{80^{\circ}}}\)
\(\implies \alpha = \frac{\sin{30^{\circ}}}{\sin{80^{\circ}}}\)
In triangle \(PRS\),
Using Sine rule of triangles,
\(\frac{\beta}{\sin{40^{\circ}}} = \frac{1}{\sin{\theta}}\)
\(\implies \beta \sin{\theta} = \sin{40^{\circ}}\)
So,
\(4 \alpha \beta \sin{\theta}= 4 (\frac{\sin{30^{\circ}}}{\sin{80^{\circ}}}) \sin{40^{\circ}}\)
\(= 4 (\frac{\frac{1}{2}}{2\sin{40^{\circ}} \cos{40^{\circ}}}) \sin{40^{\circ}}\)
\(= \frac{1}{\cos{40^{\circ}}}\)
\(\cos{45^{\circ}} < \cos{40^{\circ}} < \cos{30^{\circ}}\)
\(\frac{1}{\sqrt{2}} < \cos{40^{\circ}} < \frac{\sqrt{3}}{2}\)
\(\frac{2}{\sqrt{3}} < \frac{1}{\cos{40^{\circ}}} < \frac{\sqrt{2}}{1}\)
\(\implies \frac{1}{\cos{40^{\circ}}} \in (\frac{2}{\sqrt{3}}, \frac{\sqrt{2}}{1})\)
\(\approx (1.01, 1.41)\)
Therefore, options A and B are True.


Comments
Post a Comment