Question 6 - Jee advanced Math 2022 P2 Questions with Solutions
Let \(\beta\) be a real number. Consider the matrix
\(\Biggl(\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl)\).
If \(A^{7} - (\beta - 1)A^{6} - \beta A^{5}\) is a singular matrix, then the value of \(9\beta\) is _____.
Sol:
\(A^{n}\) is a matrix A multiplied to itself n times.
Consider \(A^{7}\)
\( = A^{6} \cdot A\)
\( = (A^{5} \cdot A) \cdot A\)
\( = A^{5} \cdot (A \cdot A)\)….. Associative law of matrix multiplication
\( = A^{5} \cdot A^{2}\)
\(A^{7} - (\beta - 1)A^{6} - \beta A^{5}\)
\( = A^{5} \cdot A^{2} - (\beta - 1)[A^{5} \cdot A] - \beta A^{5}\)
For any constant \(p\) and square matrices \(A\) and \(B\),
\(p (A \cdot B) = (pA) \cdot B = A \cdot (pB)\)
\(\implies = A^{5} \cdot A^{2} - A^{5} \cdot [(\beta - 1) A] - \beta A^{5}\)
Also, for any square matrix \(A\), \(I \cdot A = A = A \cdot I\) where \(I\) is the identity matrix of the same order as A.
\(\implies = A^{5} \cdot A^{2} - A^{5} \cdot [(\beta - 1) A] - A^{5} \cdot (\beta I)\)
Using distributive rule of matrices,
\(\implies = A^{5}[A^{2} - (\beta - 1)A - \beta I)]\)
The above is a singular matrix.
\(\implies det(A^{5}[A^{2} - (\beta - 1)A - \beta I)]) = 0\)
Using the theorem which states that the determinant of the product of matrices is equal to the product of their determinants.
\(det(A_{1} \cdot A_{2} \cdot A_{3} \cdot……A_{n}) = det(A_{1}) \cdot det(A_{2}) \cdot det(A_{3}) \cdot ……det(A_{n})\)
\(\implies det(A^{5}) \cdot det(A^{2} - (\beta - 1)A - \beta I)) = 0\)
\(\implies det(A^{5}) = 0\) OR \(det(A^{2} - (\beta - 1)A - \beta I)) = 0\)
Using associative and distributive properties of matrices,
\(\implies det(A \cdot A \cdot A \cdot A \cdot A) = 0\) OR \(det(A^{2} - \beta A + A - \beta I)) = 0\)
\(\implies (det(A))^{5} = 0\) OR \(det(A(A - \beta I) + I(A - \beta I)) = 0\)
\(\implies (det(A))^{5} = 0\) OR \(det((A - \beta I) (A + I)) = 0\)
\(\implies (det(A))^{5} = 0\) OR \(det(A - \beta I) = 0\) OR \(det(A + I) = 0\)
\(det(A) = \Biggl|\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl|\)
\( = \beta (-2 + 2) - 0() + 1(2 - 3)\)
\( = -1\)
\((det(A))^{5} = (-1)^{5} \neq 0\)
\(det(A - \beta I) = det\Biggl(\Biggl(\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl) - \beta \Biggl(\matrix{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}\Biggl)\Biggl)\)
\( = \Biggl|\matrix{0 & 0 & 1 \\ 2 & 1 - \beta & -2 \\ 3 & 1 & -2 - \beta}\Biggl|\)
\( = 0() - 0() + 1(2 - 3 + 3\beta)\)
\( = 3\beta - 1\)
\(det(A - \beta I) = 0\)
\(\implies 3\beta - 1 = 0\)
\(\implies \beta = \frac{1}{3}\)
\(det(A + I) = det\Biggl(\Biggl(\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl) + \Biggl(\matrix{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}\Biggl)\Biggl)\)
\( = \Biggl|\matrix{\beta + 1 & 0 & 1 \\ 2 & 2 & -2 \\ 3 & 1 & -1}\Biggl|\)
\( = \beta + 1(-2 + 2) - 0() + 1(2 - 6)\)
\( = -4 \neq 0\)
\(\implies \beta = \frac{1}{3}\)
\(\implies 9\beta = \frac{9}{3} = 3\)
Comments
Post a Comment