Question 6 - Jee advanced Math 2022 P2 Questions with Solutions

 Let \(\beta\) be a real number. Consider the matrix

\(\Biggl(\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl)\).

If \(A^{7} - (\beta - 1)A^{6} - \beta A^{5}\) is a singular matrix, then the value of \(9\beta\) is _____.

Sol: 

\(A^{n}\) is a matrix A multiplied to itself n times.

Consider \(A^{7}\)

           \( = A^{6} \cdot A\)

           \( = (A^{5} \cdot A) \cdot A\)

           \( = A^{5} \cdot (A \cdot A)\)….. Associative law of matrix multiplication

           \( = A^{5} \cdot A^{2}\)

\(A^{7} - (\beta - 1)A^{6} - \beta A^{5}\)

 \( = A^{5} \cdot A^{2} - (\beta - 1)[A^{5} \cdot A] - \beta A^{5}\)

For any constant \(p\) and square matrices \(A\) and \(B\), 

\(p (A \cdot B) = (pA) \cdot B = A \cdot (pB)\) 

\(\implies = A^{5} \cdot A^{2} - A^{5} \cdot [(\beta - 1) A] - \beta A^{5}\)

Also, for any square matrix \(A\), \(I \cdot A = A = A \cdot I\) where \(I\) is the identity matrix of the same order as A.

\(\implies = A^{5} \cdot A^{2} - A^{5} \cdot [(\beta - 1) A] - A^{5} \cdot (\beta I)\)

Using distributive rule of matrices,

\(\implies = A^{5}[A^{2} - (\beta - 1)A - \beta I)]\)

The above is a singular matrix.

\(\implies det(A^{5}[A^{2} - (\beta - 1)A - \beta I)]) = 0\)

Using the theorem which states that the determinant of the product of matrices is equal to the product of their determinants.

\(det(A_{1} \cdot A_{2} \cdot A_{3} \cdot……A_{n}) = det(A_{1}) \cdot det(A_{2}) \cdot det(A_{3}) \cdot ……det(A_{n})\)

\(\implies det(A^{5}) \cdot det(A^{2} - (\beta - 1)A - \beta I)) = 0\)

\(\implies det(A^{5}) = 0\)  OR  \(det(A^{2} - (\beta - 1)A - \beta I)) = 0\)

Using associative and distributive properties of matrices,

\(\implies det(A \cdot A \cdot A \cdot A \cdot A) = 0\)  OR \(det(A^{2} - \beta A + A - \beta I)) = 0\)

\(\implies (det(A))^{5} = 0\)  OR  \(det(A(A - \beta I) + I(A - \beta I)) = 0\)

\(\implies (det(A))^{5} = 0\)  OR  \(det((A - \beta I) (A + I)) = 0\)

\(\implies (det(A))^{5} = 0\)  OR  \(det(A - \beta I) = 0\)  OR  \(det(A + I) = 0\)

\(det(A) = \Biggl|\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl|\)

          \( = \beta (-2 + 2) - 0() + 1(2 - 3)\)

          \( = -1\)

\((det(A))^{5} = (-1)^{5} \neq 0\)

\(det(A - \beta I) = det\Biggl(\Biggl(\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl) - \beta \Biggl(\matrix{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}\Biggl)\Biggl)\)

                    \( =  \Biggl|\matrix{0 & 0 & 1 \\ 2 & 1 - \beta & -2 \\ 3 & 1 & -2 - \beta}\Biggl|\)

                    \( = 0() - 0() + 1(2 - 3 + 3\beta)\)

                    \( = 3\beta - 1\)

\(det(A - \beta I) = 0\)

\(\implies 3\beta - 1 = 0\)

\(\implies \beta = \frac{1}{3}\)

\(det(A + I) = det\Biggl(\Biggl(\matrix{\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2}\Biggl) + \Biggl(\matrix{1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}\Biggl)\Biggl)\)

                    \( =  \Biggl|\matrix{\beta + 1 & 0 & 1 \\ 2 & 2 & -2 \\ 3 & 1 & -1}\Biggl|\)

                    \( = \beta + 1(-2 + 2) - 0() + 1(2 - 6)\)

                    \( = -4 \neq 0\)

\(\implies \beta = \frac{1}{3}\)

\(\implies 9\beta = \frac{9}{3} = 3\)


Comments

Popular posts from this blog

Question 7 - Jee advanced Math 2022 P2 Questions with Solutions

Question 3 - Jee advanced Math 2022 P1 Questions with Solutions