Question 10 - Jee advanced Math 2022 P2 Questions with Solutions

Let \(\alpha = \sum_{k = 1}^{\infty} \sin^{2k}{(\frac{\pi}{6})}\). Let \(g :[0, 1] \rightarrow R\) be the function defined by 

\(g(x) = 2^{\alpha x} + 2^{\alpha (1 - x)}\).

Then, which of the following statements is/are TRUE ?

A) The minimum value of \(g(x)\) is \(2^{\frac{7}{6}}\).

B) The maximum value of \(g(x)\) is \(1 + 2^{\frac{1}{3}}\).

C) The function \(g(x)\) attains its maximum at more than one point.

D) The function \(g(x)\) attains its minimum at more than one point.

Sol :

\(\alpha = \sum_{k = 1}^{\infty} \sin^{2k}{(\frac{\pi}{6})} = \sum_{k = 1}^{\infty} (\sin{(\frac{\pi}{6})})^{2k}\)

\( =  \sum_{k = 1}^{\infty} (\frac{1}{2})^{2k} =  \sum_{k = 1}^{\infty} ((\frac{1}{2})^{2})^{k}\)

\( =  \sum_{k = 1}^{\infty} (\frac{1}{4})^{k}\)

\( = \sum_{k = 1}^{\infty} (\frac{1}{4} + (\frac{1}{4})^{2} + (\frac{1}{4})^{3} + ……)\)

This is an infinite geometric series with the \(\text{first term}(a) = \frac{1}{4}\) and \(\text{common difference}(r) = \frac{1}{4}\).

This series will converge if the limit 

\(\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} (\frac{1}{4})^{k}\) 

exists and is finite.

Consider, \(\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} (\frac{1}{4})^{k}\)

       \( = \lim_{n \rightarrow \infty} (\frac{1}{4} + (\frac{1}{4})^{2} + (\frac{1}{4})^{3} + …+(\frac{1}{4})^{n})\)

     \( = \lim_{n \rightarrow \infty} \frac{a( 1 - r^n)}{1 - r}\)

      \( = \lim_{n \rightarrow \infty} \frac{\frac{1}{4}(1 - (\frac{1}{4})^{n})}{1 - \frac{1}{4}}\)

       \( = \lim_{n \rightarrow \infty} \frac{1}{3} (1 - \frac{1}{4^{n}})\)

       \(= \frac{1}{3} [\lim_{n \rightarrow \infty} 1 - \lim_{n \rightarrow \infty} \frac{1}{4^{n}}]\)

       \(= \frac{1}{3}[1 - 0] = \frac{1}{3}\)

Substituting \(\alpha = \frac{1}{3}\) in the given function:

\(g(x) = 2^{\frac{1}{3}x} + 2^{\frac{1}{3}(1 - x)}\)

Differentiating w.r.t \(x\),

\(g’(x) = (\frac{1}{3} \ln{2}) 2^{\frac{1}{3}x} + (-1) (\frac{1}{3} \ln{2}) 2^{\frac{1}{3}(1 - x)}\)

\(g’(x) = (\frac{1}{3} \ln{2}) (2^{\frac{1}{3}x} - 2^{\frac{1}{3}(1 - x)})\)

\(g’(x) = 0 \implies 2^{\frac{1}{3}x} - 2^{\frac{1}{3}(1 - x)} = 0\)

\(\implies 2^{\frac{1}{3}x} = 2^{\frac{1}{3}(1 - x)}\)

\(\implies \frac{1}{3}x = \frac{1}{3}(1 - x)\)

\(\implies x = \frac{1}{2}\)

The domain of \(g(x)\) is \([0, 1]\). So the critical point \(x = \frac{1}{2}\) is in the domain of the function. 

To check if the function attains maximum value or minimum value or neither at the critical point: 

Differentiating \(g(x)\) the second time,

\(g’’(x) = (\frac{1}{3} \ln{2}) [(\frac{1}{3} \ln{2}) 2^{\frac{1}{3}x} - ((-1) \frac{1}{3} \ln{2}) 2^{\frac{1}{3}(1 - x)}]\)

\(   = (\frac{1}{3} \ln{2})^{2} (2^{\frac{1}{3}x} + 2^{\frac{1}{3}(1 - x)})\)

          \(> 0\) for every \(x \in [0,1]\)

\(\implies g(x)\) attains minimum value at \(x = \frac{1}{2}\) by second derivative test.

\(\implies\) the minimum value of \(g(x)\) is 

\(g(\frac{1}{2}) = 2^{\frac{1}{3} \frac{1}{2}} + 2^{\frac{1}{3}(1 - \frac{1}{2})}\)

              \( = 2^{\frac{7}{6}}\)

The pattern followed here by \(g(x)\) is: decreasing initially in the interval \(0 \leq x \leq \frac{1}{2}\) and then increasing in the interval \(\frac{1}{2} \leq x \leq 1\). So the maximum value will be attained at any of the two end points.

\(g(0) = 1 + 2^{\frac{1}{3}}\) and

\(g(1) = 1 + 2^{\frac{1}{3}}\)

Hence, the maximum value of \(g(x)\) is \(1 + 2^{\frac{1}{3}}\). Also, the function attains the same maximum value at two points(0 & 1), but the minimum value at only one point(\(\frac{1}{2}\)).

Therefore, options A, B and C are True. 


Comments

Popular posts from this blog

Question 7 - Jee advanced Math 2022 P2 Questions with Solutions

Question 6 - Jee advanced Math 2022 P2 Questions with Solutions

Question 3 - Jee advanced Math 2022 P1 Questions with Solutions