Question 10 - Jee advanced Math 2022 P2 Questions with Solutions
Let \(\alpha = \sum_{k = 1}^{\infty} \sin^{2k}{(\frac{\pi}{6})}\). Let \(g :[0, 1] \rightarrow R\) be the function defined by
\(g(x) = 2^{\alpha x} + 2^{\alpha (1 - x)}\).
Then, which of the following statements is/are TRUE ?
A) The minimum value of \(g(x)\) is \(2^{\frac{7}{6}}\).
B) The maximum value of \(g(x)\) is \(1 + 2^{\frac{1}{3}}\).
C) The function \(g(x)\) attains its maximum at more than one point.
D) The function \(g(x)\) attains its minimum at more than one point.
Sol :
\(\alpha = \sum_{k = 1}^{\infty} \sin^{2k}{(\frac{\pi}{6})} = \sum_{k = 1}^{\infty} (\sin{(\frac{\pi}{6})})^{2k}\)
\( = \sum_{k = 1}^{\infty} (\frac{1}{2})^{2k} = \sum_{k = 1}^{\infty} ((\frac{1}{2})^{2})^{k}\)
\( = \sum_{k = 1}^{\infty} (\frac{1}{4})^{k}\)
\( = \sum_{k = 1}^{\infty} (\frac{1}{4} + (\frac{1}{4})^{2} + (\frac{1}{4})^{3} + ……)\)
This is an infinite geometric series with the \(\text{first term}(a) = \frac{1}{4}\) and \(\text{common difference}(r) = \frac{1}{4}\).
This series will converge if the limit
\(\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} (\frac{1}{4})^{k}\)
exists and is finite.
Consider, \(\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} (\frac{1}{4})^{k}\)
\( = \lim_{n \rightarrow \infty} (\frac{1}{4} + (\frac{1}{4})^{2} + (\frac{1}{4})^{3} + …+(\frac{1}{4})^{n})\)
\( = \lim_{n \rightarrow \infty} \frac{a( 1 - r^n)}{1 - r}\)
\( = \lim_{n \rightarrow \infty} \frac{\frac{1}{4}(1 - (\frac{1}{4})^{n})}{1 - \frac{1}{4}}\)
\( = \lim_{n \rightarrow \infty} \frac{1}{3} (1 - \frac{1}{4^{n}})\)
\(= \frac{1}{3} [\lim_{n \rightarrow \infty} 1 - \lim_{n \rightarrow \infty} \frac{1}{4^{n}}]\)
\(= \frac{1}{3}[1 - 0] = \frac{1}{3}\)
Substituting \(\alpha = \frac{1}{3}\) in the given function:
\(g(x) = 2^{\frac{1}{3}x} + 2^{\frac{1}{3}(1 - x)}\)
Differentiating w.r.t \(x\),
\(g’(x) = (\frac{1}{3} \ln{2}) 2^{\frac{1}{3}x} + (-1) (\frac{1}{3} \ln{2}) 2^{\frac{1}{3}(1 - x)}\)
\(g’(x) = (\frac{1}{3} \ln{2}) (2^{\frac{1}{3}x} - 2^{\frac{1}{3}(1 - x)})\)
\(g’(x) = 0 \implies 2^{\frac{1}{3}x} - 2^{\frac{1}{3}(1 - x)} = 0\)
\(\implies 2^{\frac{1}{3}x} = 2^{\frac{1}{3}(1 - x)}\)
\(\implies \frac{1}{3}x = \frac{1}{3}(1 - x)\)
\(\implies x = \frac{1}{2}\)
The domain of \(g(x)\) is \([0, 1]\). So the critical point \(x = \frac{1}{2}\) is in the domain of the function.
To check if the function attains maximum value or minimum value or neither at the critical point:
Differentiating \(g(x)\) the second time,
\(g’’(x) = (\frac{1}{3} \ln{2}) [(\frac{1}{3} \ln{2}) 2^{\frac{1}{3}x} - ((-1) \frac{1}{3} \ln{2}) 2^{\frac{1}{3}(1 - x)}]\)
\( = (\frac{1}{3} \ln{2})^{2} (2^{\frac{1}{3}x} + 2^{\frac{1}{3}(1 - x)})\)
\(> 0\) for every \(x \in [0,1]\)
\(\implies g(x)\) attains minimum value at \(x = \frac{1}{2}\) by second derivative test.
\(\implies\) the minimum value of \(g(x)\) is
\(g(\frac{1}{2}) = 2^{\frac{1}{3} \frac{1}{2}} + 2^{\frac{1}{3}(1 - \frac{1}{2})}\)
\( = 2^{\frac{7}{6}}\)
The pattern followed here by \(g(x)\) is: decreasing initially in the interval \(0 \leq x \leq \frac{1}{2}\) and then increasing in the interval \(\frac{1}{2} \leq x \leq 1\). So the maximum value will be attained at any of the two end points.
\(g(0) = 1 + 2^{\frac{1}{3}}\) and
\(g(1) = 1 + 2^{\frac{1}{3}}\)
Hence, the maximum value of \(g(x)\) is \(1 + 2^{\frac{1}{3}}\). Also, the function attains the same maximum value at two points(0 & 1), but the minimum value at only one point(\(\frac{1}{2}\)).
Therefore, options A, B and C are True.
Comments
Post a Comment