Question 9 - Jee advanced Math 2022 P1 Questions with Solutions
Consider the equation
\(\int_{1}^{e} \frac{(\log_{e}{x})^{\frac{1}{2}}}{x(a - (\log_{e}{x})^\frac{3}{2})^{2}}dx = 1, \: \: a \in (-\infty, 0) U (1, \infty)\).
Which of the following statements is/are true?
(A) No \(a\) satisfies the above equation
(B) An integer \(a\) satisfies the above equation
(C) An irrational number \(a\) satisfies the above equation
(D) More than one \(a\) satisfy the above equation
Sol :
\(\int_{1}^{e} \frac{(\log_{e}{x})^{\frac{1}{2}}}{x(a - (\log_{e}{x})^\frac{3}{2})^{2}}dx = 1\)
\(\implies \int_{1}^{e} \frac{(\log_{e}{x})^{\frac{1}{2}}\times \frac{1}{x}}{(a - (\log_{e}{x})^\frac{3}{2})^{2}}dx = 1\)
Let \((\log_{e}{x})^\frac{3}{2} = t\)
\(\implies (\frac{3}{2}(\log_{e}{x})^\frac{1}{2} \times \frac{1}{x})dx = dt\)
\(\implies ((\log_{e}{x})^\frac{1}{2} \times \frac{1}{x})dx = \frac{2}{3}dt\)
\(x = 1 \implies (\log_{e}{1})^\frac{3}{2} = 0 = t\)
\(x = e \implies (\log_{e}{e})^\frac{3}{2} = 1 = t\)
\(\implies \int_{0}^{1} \frac{\frac{2}{3}dt}{(a - t)^{2}}= 1\)
Let \(u = a - t\)
\(\implies du = - dt\)
\(t = 0 \implies u = a\)
\(t = 1 \implies u = a - 1\)
\(\implies -\frac{2}{3} \int_{a}^{a-1} u^{-2} du = 1\)
\(\implies -\frac{2}{3} [\frac{u^{-2+1}}{-2+1}]_{a}^{a-1} = 1\)
\(\implies \frac{2}{3} [\frac{1}{u}]_{a}^{a-1} = 1\)
\(\implies \frac{2}{3}[\frac{1}{a - 1} - \frac{1}{a}] = 1\)
\(\implies \frac{1}{a(a-1)} = \frac{3}{2}\)
\(\implies 3a^{2} - 3a - 2 = 0\)
Therefore,
\(a = \frac{-(-3) \pm \sqrt{9 + 24}}{6}\)
\(\implies a = \frac{3 \pm \sqrt{33}}{6}\)
\(\sqrt{33} > \sqrt{25} = 5\) and \(-\sqrt{33} < -\sqrt{25} = -5\)
\(\implies 3 + \sqrt{33} > 3 + 5 = 8\) and \(3 - \sqrt{33} < 3 - 5 = -2\)
\(\implies \frac{3 + \sqrt{33}}{6} > \frac{8}{6}\) and \(\frac{3 - \sqrt{33}}{6} < \frac{-2}{6}\)
\(\implies \frac{3 + \sqrt{33}}{6} > 1\) and \(\frac{3 - \sqrt{33}}{6} < 0\)
Both the values are in the interval \(a \in (-\infty, 0) U (1, \infty)\).
Also, both \(a = \frac{3 \pm \sqrt{33}}{6}\) are irrational numbers.
Therefore, the correct options are C and D.
Comments
Post a Comment